
PC20 PLC maintenance
Rack version PLC

VERSION 0.0

Creation date: 2005-03-16

Last Modification date 2005-04-13

KTA b.v.

Under Construction

H.C.J.J Kanters

©2003 KTA B.V.

Ref no.

Date

Page 2/

Table of contents

 Table of contents..2

1. Introduction .. 4

1.1 Version control .. 4
1.2 About this document .. 4

2. Introduction PC20 PLC .. 5

2.1 Operating system problems for support programs ... 5

3. The PC20 PLC system .. 6

3.1 PLC system ... 7
3.2 Specifications .. 8
3.3 PLC 20 Hardware overview .. 8

 CPU Card ... 8
 Memory Cards .. 8
 power supply .. 9
 rack (backpanels) .. 9
 Input / Output cards ... 9
 Communication cards ... 9
 Special cards ... 9
 Wiring support Connection cards ... 9

3.4 Configuration and Addressing of the PLC PC20 .. 10
 Module Identification (MID) .. 10
 Separation Code for Inputs and Outputs (SCIO) ... 11
 Hardware lay out in PC20 Program ... 11
 The CI20/21 for Programming .. 11
 The MM20..26 memory card .. 12
 The CP20..25 Central Processor Unit .. 12
 The RS20 Communication between PC20’s .. 12
 The PM25 Servo positioning .. 13
 The VI20/21/22 Bidirectional serial interface ... 13
 The VI21 Bidirectional serial/network interface ... 14
 The VI22 Bidirectional modbus interface ... 14
 The Analog Input /Output cards .. 14
 The DM20/21/22/23 memory cards ... 14
 The EC20 high speed counter card ... 15

4. PLC Software and Software Tools .. 16

4.1 The Instruction set .. 16
 The logic instructions AND, OR, AND NOT, OR NOT, TRIG .. 16
 Execute instructions EQL,EQL NOT, SET1,SET0, FETCH BIT,STORE BIT 17
 Execute instructions FETCH CONSTANT, FETCH DIGIT, STORE DIGIT 18
 Execute instructions ADD, SUBTRACT, DIVIDE, MULTIPLY ... 18
 Execute instructions COMPARE, COUNTDOWN, COUNTUP .. 19
 Execute instructions SHIFT LEFT, SHIFT RIGHT .. 20
 Jump instructions JUMP TO SUBROUTINE TRUE/FALSE ,RETURN 20
 Jump instructions JUMP RELATIVE TRUE/FALSE ... 21
 System Instructions END,LAST INPUT OUTPUT and NO OPERATION 21

4.2 Program examples ... 22
 AND , OR EQL .. 22

Ref no.

Date

Page 3/

 CLOCK TIMING SIGNALS .. 25
 COUNTER&TIMER .. 26
 SUBROUTINES .. 27
 CALCULATIONS ... 28

4.3 The program layout ... 29
 Standard program structure ... 29
 Often used program structure .. 30
 Start up delay ... 31

4.4 PDS35 .. 31
4.5 Developed Software tools by third parties .. 31

5. Converting PC20 to S7 (or other PLC,s) ... 33

6. Working online with the PC20 ... 34

6.1 PDS 35 online monitoring .. 34
6.2 MONI online monitoring .. 35
6.3 PC20 online tools for Windows XP and W2000 .. 38

7. APPENDICES .. 39

7.1 Apendix A PLC Hardware environment in Source code .. 39
7.2 Apendix B Abbreviations and name explanations ... 40
7.3 Apendix C Short Instruction Set PC20 .. 42
7.4 Apendix D Wiring diagram Programming cable PC20 .. 44

Ref no.

Date

Page 4/

1.Introduction
 This document gives a short description of how to understand and maintain the Philips PC20 PLC. The

PC20 is an “old” PLC system and is not produced any more, at the time this document is written. For a
full explanation of the PC20 and its functioning the “PC20 USER MANUAL” needs to be consulted that
was issued by “N.V. Philips Gloeilampen Fabrieken”. More recent information of the PC20 PLC can
be achieved from Nyquist Control Systems which is supporting the PC20 PLC at the moment.

 This document is mainly a document for service purposes and for the software maintenance of the
PC20 system and its related control system.

 In this document the PC20 rack version configuration that is common used is explained, with a
selection of the hardware and examples of the software.

 The PC20 is a produced in more hardware versions. The most common used version is the PC20 in
the rack version. Other versions are the MC20/MC30 /MC31 which is a flat “Pancake” version , this is
often used in a smaller automation configurations. The PLC773 is a single rack card model and is
used rarely. The MC40/41 is a single micro processor model and does not uses the Processor chip
set that is used in the other members of the PC20 family.

1.1Version control

In order to trace document differences and to ensure project management quality this document will be under
version control.
The following table shows the history of this document.
Version date description name
0.1 10 march 2006 First created, draft version H.Kanters

1.2About this document

The information placed in this document is constructed from other documents ,user manuals , existing PC20
programs and Pc20 hardware datasheets . This document does not imply to be complete it is mainly an setup
for a maintaining and supporting still running applications. This document should also be helpful if there is a
need to perform small changes or extensions to the hardware or software in existing applications.
If you, have questions, remarks or idea’s for additions to complete or improve this document. Please contact.
Henri@ktautomation.nl

A list of information sources:
Name Description Number
Nyquist Supplier PC20 and P8 hardware contact.us@nyquist.com
G.Withagen MID SCIO addressing information Date:
H.Kanters Program examlpes Henri@ktautomation.nl
PC20 User Manual User Hardware and Software description N.V. Philips Gloeilampen

Fabrieken
VHE Several documents and examples VHE Industrial Automation info@Vhe.nl
DM20 document Product Data sheet 12nc: 9498 733 00413
PDS35 Handleiding Dutch: user manual Version B.7
VI20 document Product Data sheet 12:nc: 9498 733 02611
PTE Philips Several documents and examples
PM25 Servo Control Card on PM25 H.Mansvelt Philips Centre For Manufacturing

Technology CFT
PM25 Technical Documentation CFT 12nc: 8122 968 5013

mailto:Henri@ktautomation.nl
mailto:contact.us@nyquist.com
mailto:Henri@ktautomation.nl

Ref no.

Date

Page 5/

2.Introduction PC20 PLC
This chapter describes the specific features of the PC20 PLC in order to under stand the functioning of the
PC20 and its related peripherals. The description in this chapter does not intend to describe the complete set of
features of the PC20 PLC but can be seen as an introductory of some of the most often used ones.
The PC20 is a dedicated processor system that handles the directly data, inputs and outputs that is interpreted
by the CPU, that reads task information from the command instructions in the software Program.
Because the PC20 has no system software but system hardware, the PC20 is a relatively fast PLC compared to
the actual speed of the Chipset compared to other PLC’s. This advantage is also a disadvantage because the
instruction set is hardware limited and can not be updated to a version that is normally used in more modern
PLC’s.
This disadvantage is the lack of instructions to communicate in a network or other sophisticated communication
means. The lack of having sufficient Communication means is the greatest disadvantage of the PC20.
Another disadvantage is the lack of original support software and hardware for programming and debugging of
the hardware and software. In the past many users of the PC20 PLC created their own development system en
debugging programs in order to be able to program , debug and document the PC20 automation projects they
were working on. Some of these software tools will be explained in this document. This will be a small collection
of as the programs that were created during the “life cycle” of the PC20.
The programming on the PC20 can be done directly in the online object program (OBJ) by means of a desk
terminal ,a hand terminal or a normal TTY monitor with the TTY … protocol. In the past PDS35 , PDS5 , Top
Promisys and ….. were used in order to be able to create a text source program with symbolic names and
explanation text. By means of this source program it was easier to document the functioning of the software in
the application.
The PDS35, PDS5, TopPromisys and Fusion Had to convert the source program to a object program that had
to be downloaded into the PC20 PLC. Also upload of the object program from the PLC into the PC on which the
support programs were running. Each of these programs had specific features that the others did not have
introduced specific way of working. An example is a kind of scope function with trigger possibilities in
TopPromisys. Also Fusion was a graphic programming language that also could convert source code to
Siemens S5 object programs.
Because this document has as a target to give clarity on the PC20 PLC system itself only a few of these
features of the support programs are explained in this document. The use of the PDS35 support system is most
commonly used and there fore some of the functions and possibilities of the TeHa PDS35 support system will
be explained .

2.1Operating system problems for support programs

Because most of the support programs were created in the period that DOS, Windows 95 and
Windows98 were used. Most of the programs have problems when used under Windows 2000
and windows XP and the generation operation systems that will be used in the future.
For maintenance purposes often an old PC with windows 98 or Windows 95 is used to support the
PC20 software tools in order to maintain the PC20 PLC equipped machinery.
For maintenance purposes programs that work under windows XP and windows 2000 for
monitoring, downloading, uploading and changing online are under construction. For
development of new applications and large program changes the “old” programs that work under
Dos .Window95 or Windows 98 should be used.

Ref no.

Date

Page 6/

3.The PC20 PLC system
The PC20 cycle consists of a “data processing” phase and a I/O phase. During the data processing phase the
Inputs and other internal data components are evaluated by the user application program. This results in
controlling and defining a value for the outputs. During the I/O phase this outputs are copied to the physical
outputs and inputs. Also data exchange between the PC20 PLC and SCADA systems or other communication
partners is executed during the I/O phase.
The PC20 PLC has separate memory for the program and the stored data. The stored data that also includes
the I/O is called the SMA (Scratch path Memory Address). The SMA is stored in the CPU of he PC20 PLC and
can be battery backed up.
The first 12 bits of the SMA have a specified system function and can not be used freely by the user application
program. In the following lines in the source program these bits are explained. Note that the fixed addressed
bits are different in the MC30/31 and the MC41/40. These differences are not described in this document.
The first 12 bits as used in a PDS35 source program:

Example symbolic names for first 10 bits (11 and 12 can be used in the program)

EQ **
EQ *** STANDARD AND GENERAL PLC BITS ***
EQ **
EQ
EQ END_0 = 0 PROGRAM END
EQ OVERFL = 0.0 ARITMATHIC OVERFLOW
EQ ALWAYS = 0.1 ALWAYS ACTIVE=(1)
EQ ALARM = 0.2 24VDC BELOW 17.5V
EQ C10MS = 0.3 CLOCK 10 MSEC.
EQ C100MS = 1.0 CLOCK 100 MSEC.
EQ C1S = 1.1 CLOCK 1 SEC.
EQ C10S = 1.2 CLOCK 10 SEC.
EQ C60S = 1.3 CLOCK 1 MIN.
EQ PAGE0 = 2.0 BIT PAGING 2^0
EQ PAGE1 = 2.1 BIT PAGING 2^1

The program memory can go up to 16K . This maximum limitation is caused by the use of the dedicated chipset
of the PC20 PLC that only has 11 bits for addressing the data memory area. This addressing is organized in the
following way:
Address lines ADD0 until ADD8 describe the nibble 0 until 0511 in the page. Pages 0 until 3 are possible
Address lines ADD9 until ADD10 describe the bit in the nibble 0,1,2,3 or the Page 0,1,2,3 if a Nibble instruction
is used

Instructioncode bit 0-4
(Instruction 0 to 31)

LSB

0bit 1 2 3

MSB

4

LSB

5

MSB

156 7 8 9 10 11 12 13 14

one-bit or four bit scratchpad memory place (11bits used)
or

Organization of the Program word of PC20 program memory

numrical code 0 to 15 (only bit 12 to 15 used)
or

Line numbers 0 to 2047 (all 11 bits used)
or

Line numbers to jump forward/backward -max 2047
(all 11bits used)

Ref no.

Date

Page 7/

This restriction causes that without using tricks the PC20 PLC can only address bits in the first page 0. In all
other pages 1 until 3 bits can not be addressed and only Nibble instructions are possible.
Page switching is possible but not recommendable because if it is used the cross reference tool is not reliable
any more and debugging is much more difficult. For that reason Page switching is not described in this
document. Other options to approach bits in the pages 1 to 4 are using subroutines that swap the SMA data
from page 1-3 to page 0 and back again . see the sub chapter subroutines.
The SMA area layout in the maximum configuration is seen in the following drawing.

0 1 511 1000 1001 1511

Page 0 Addressable
using 1bit instructions Page 1

Page 1 to 4 Addressable using Nibble instructions

2000 2001 2511

Page 2

3000 3001 3511

Page 3

0

1

2

3

SMA Addres

Adr>
Bit

Not all CPU’s support all the pages, and some older types even only support parts of these pages. Also the
MC30/31/40/41 types have specific differences in page layout using the first 12 bits of the SMA.

3.1PLC system

This sub-chapter describes all relevant details how the system of the PC20 is functions. This can work alighting
during the rest of the explanation of the PC20 PLC system.
To understand the functioning of the PC20 PLC system it is important to understand the way the system
hardware is organized. The PC20 PLC system consists of the following essential parts that are used by the
PC20 instruction set. Not all essential parts are presented in the following schematic but only those whose
names are used in the explanation of the instruction set.

The Address counter (9Bits address + 2 Bits for Page”0-3” or 2 Bits for Bit address “0-3”)
A-Register (16Bit FIFO register used for most arithmetic operations)
B-Register (16Bi FIFO register used in combination with the A-register)
M/Q Register (16Bit register used for divide and multiply operations)
Jump Register (4 Return addresses , 4 deep nesting is possible)
Comparator (4 Bits)
Shift Register (4 Bits)
Timing and Control (Sequence generator that reads the instructions and activates the other parts)

The Timing and Control hardware reads the program memory and activates the different hardware parts
depending on the instruction and the addressing that is in the user application software.

Ref no.

Date

Page 8/

3.2 Specifications

This sub-chapter describes all relevant specifications of the PLC system in order to understand the limitations
that can cause problems during maintenance of the software and hardware.
The PC20 PLC has the following features and missing features:

• A dedicated hardware CPU for high speed controller functions (Cycle time 10-30 mSec average)
• A Five bits data area for instructions resulting in a maximum of 32 instructions (only 31 used)
• A Eleven bits address area. Divided in a Nine Bits (0-511) and Two bits bit (0-3) bit selector 0r two

bits page selector (0-3)
• Internal power supply of 10VDC. SM20 or SO20 cards convert 24VDC to 10VDC.
• One Program file, the program consists of one large list of instructions. No sub divisions.
• A scratchpad data memory of 2K4 (2k of 4bit Nibbles)
• Up to 16K program lines .A instruction (operator) followed by data (operand).
• Hardware addressing is done by soldering paths on the backpanel rear side.
• Programming only possible over RS232 CI20/21 programming interface
• Networking possible RS485 PPCCOM via CI20/21 or V20/21.
• Indirect addressing not possible with Instruction from the instruction set. (No relative jump). This has

to be solved with the VI20/21 or with the DM20 cards

3.3PLC 20 Hardware overview

This sub-chapter describes general information of the hardware, for specific hardware information the specific
data need to be used.
Some special cards are produced by companies and Philips departments in order to obtain a functionality that
was not present in the official range of PC20 cards. Information of these cards can only be obtained from the
manufacturer of these cards. Most of the information about the other cards can be found in the PC20 User
manual and the specific data sheets.

TIP: If Configuration of the PLC fails remove most of the cards and leave only that card you want to check. First
try to make this card work .If this functions ok then move the other cards in one by one and keep on checking
the functioning of the card you wanted to check. Always switch of the power to the rack if you are exchanging
PC20 cards.

CPU Card

CP20 Eprom card 0,25K4 Scratchpad and 2K16 Program battery external
CP21 C-MOS RAM 0,25K4 Scratchpad and 1K16 Program battery internal
CP22 C-MOS RAM 2K4 Scratchpad and 1K16 Program battery external
CP24 C-MOS RAM 0,25K4 Scratchpad and 2K16 Program battery internal
CP25 C-MOS RAM 2K4 Scratchpad and 2K16 Program battery internal

Memory Cards

MM20 Memory cards with 8K16 eprom
MM21 Memory cards with 8K16 cmos ram battery on board
MM24 Memory cards with 4K16 cmos ram battery on board
MM25 16K Memory cards with eprom 2764
MM26 16K Memory cards with eeprom

Ref no.

Date

Page 9/

power supply

SM20 Power supply 24VDC to 10VDC
SO20 Power supply 24VDC to 10VDC + power outputs

rack (backpanels)

BP23a/25/26 Backpanels for the PC20
BP23b Backpanel lower card for CPU,MM and CI cards (8K and 16K version)
SC20 Small controller Cabinet

Input / Output cards

IM20/21/22 Input cards
OM21/22 Output cards
RP20 bidirectional parallel interface input and output module
EC20 High speed counter card
DA20 Digital to Analog output card
DA20 Analog to digital input card
AO20 Analog output module card
AI20 Analog input module card

Communication cards

CI20/21: Used for programming i(switch to VDU) and networking (switch to ppccom)
RS20 Bidirectional Serial Interface
VI20/21 Programmable Communication card for RS485/232 communication
VI21/1 Programmable Communication card communication with PPCCOM network
PU21/23 Specific programming card to use in combination with the PU20/40

Special cards

PM25 Servo control position unit.
DM20 Memory data controller card
DM21/22/23 Memory data storage modules 128K (64Kram/64Keprom)
LC20 PID Loop controller

Wiring support Connection cards

Many different cards were developed. Some by local divisions of Philips, this was done to avoid
soldering and connect the I/O of the cards to screw connecters by using standard cable and
connector sets. Some of these connecter cards are:

AA22 Adaptor for IM22
AA23 Adaptor for OM22
AA28 Adaptor for RP20
AA29 Adaptor for RS20
AA34 Adaptor for VI21

Ref no.

Date

Page 10/

3.4Configuration and Addressing of the PLC PC20

This sub-chapter describes the hardware configuration. The addressing of each card specific is not explained in
this section only a remark is made if specific addressing is necessary. The addressing of the cards in the panel
is performed by interconnecting the solder paths on the rear side of the rack on the back panel.
The addressing of the inputs and outputs is directly coupled to the SMA and all cards can be addressed in all 4
pages of the SMA. However bit oriented cards arer mostly addressed in page 0 and Nibble oriented cards are
mostly addressed in the pages 1 until 3.

Module Identification (MID)

By giving the module the correct address by means if the MID soldering paths the card and its
addresses are unique identified. And can be addressed from the software on that exact location in
the SMA.
The MID addresses are binary coded and start with 2 ^1 = 2 and not with the 2^0 as would be
expected. Also if a card has an input or output range of 4 Nibble (4*4 = 16Bits) the start address
should always be a multiple of 4 Nibbles. For example for a 4 Nibble input card the MID address
should be 0,4,8 ect. And For a 8 Nibble output card the address should be 0,8,16,ect.
The MID soldering paths range from 1 to 8 for the addressing within a page and the MID
soldering paths 9 and 10 are used for the page selection.

MID1 = 2^1 =2 Address
MID2 = 2^2 =4
MID3 = 2^3 =8
MID4 = 2^4 =16
MID5 = 2^5 =32
MID6 = 2^6 =64
MID7 = 2^6 =128
MID8 = 2^6 =256
MID9 = 2^0 =1000 Page
MID10 = 2^1 =2000

For example An IM20 Input Card with its inputs on 146.0 until 149.3.
The following paths should be soldered. (130 = 128 +16 +2)
MID1 = 2^1 =2 Address
MID4 = 2^4 =16
MID7 = 2^6 =128

For example An RP20 bidirectional parallel interface Card (16*8 Bit) on address 1032 until 1063.
The following paths should be soldered. (1032 = 1000+32)
MID5 = 2^5 =32 Address
MID9 = 2^0 =1000 Page

For some other cards the MID soldering paths are also used as setting for other features, it is
wise to check the specific card data if you find a MID path soldered on an unexpected position.
For example the RS20 card can only be addressed on value’s 0,64,128 ect. The MID addresses
fom 1 until 32 have no addressing functioning but MID1 and MID2 can be in use.
MID1 (soldered) = RS20 card identified as active slave
MID2 (soldered) = RS20 card identified as passive slave
For the information active passive check the PC20 PLC manual and the data sheets of the RS20.

REMARK: If input card and output card with identical size are addressed on the same address the
outputs of the input card are copied one on one to the inputs of the output card. This because
both have a direct interface with the SMA area.

Ref no.

Date

Page 11/

TIP: If addressing of card fails empty the PLC program only put a minimum test program in the PLC and check
the whole data scratchpad area of the PLC if the card gives input or output response in an other area.
Minimum test program:
0 AND 0.1
1 LIO 2511
2 END 4

Separation Code for Inputs and Outputs (SCIO)

The Separation Code for Inputs and Outputs is used by the more complex data exchange cards
like the RS20 and the RP20 card. These cards need to identify what part of the data exchange
area is input and what part is output.
For some other cards the SCIO soldering paths are also used as setting for other features, it is
wise to check the specific card data if you find a SCIO path soldered with an other card then
RP20 or RS20.
The 4 SCIO soldering paths divide the data area in (2^4) 16 parts. This means for the RP20 a
part is 2*4Bit and for the RS20 a part is 4*4Bit. If the SCIO paths are soldered this indicates the
address were the outputs will end and the inputs begins. See the following examples.

-If SCIO 3 is soldered first half (8 parts) of the data area will be output and second half (8 parts)
will be inputs.
-If none of the SCIO paths is soldered the whole of the data area will be input
-If all of the SCIO paths are soldered the whole of the data area will be output except the
highest part. So selecting only outputs is not possible with RP20 and RS 20.

For more example check the PC20 User manual

Hardware lay out in PC20 Program

In some of the Philips PC20 source programs a hardware layout is presented in the general purpose area, so
the programmer has a clear view of the hardware and addressing used in the program. If this hardware layout
list is up to date there is no need to go to the actual hardware to understand the addresses that are used in the
program. An example of such a hardware environment layout can be found in Appendix A.

The CI20/21 for Programming

The CI20/21 is located in the most left position looking at the PC20 PLC rack. The CI21 is normally used for
programming (switch on VDU) ,but can also be used as a communication card in a PPCCOM RS485/442
network for SCADA purposes.(switch on PPCCOM)
In this chapter only the CI21 used as a programming interface is described. Configuring the card is performed
with the dipswitches on the CI21 card.
The setting most often used for the CI21 is the following:
9600 BAUD
RS232
Point to point

The connection diagram for the RS232 cable:

TIP: For checking the communication cable the MONI.EXE program tries connect continuously and indicates
directly if the communication is established without an extra reset.

TIP: If no cable available a Serial connector converter from 9Pins male to 25pins female has the correct
interface wiring and can also be applied together with a 1:1 cable as a PC20-RS232 interface cable.

Ref no.

Date

Page 12/

The MM20..26 memory card

The Memory card that is mostly on the second position from the left needs no extra configuration.
Using a 16K memory card also requires a small backpannel the BP23b of a 16K version. If this is not the case
and a 8K version is used, this version can be adjusted by adding one connection on the BP23b. The
specification how to add this connection can be found in the PC20 user manual.

TIP : If the software is changed that a download and stop of the PC20 is necessary. It is possible to download
the software in an other Memory card in an other PC20 rack and swap the pC20 memory cards. In this way the
PC20 is only stopped for a short period.
And if the software change does give the desired effect the old memory card can be placed back and the
original program is restored quickly.

The CP20..25 Central Processor Unit

The CPU card is mostly positioned as third card from the left needs no extra configuration.
A Reset of the program of the PC20 is possible with the RSE input on the backpannel B23b that
connects the CI.., MM.. and the CP.. cards. If a reset of the program and a reset of the SMA in
the CPU is required, then also the RSME input needs to be high during the use of the RSE signal.

On some BP23b backpannels the RSE is connected to a pushbutton and the RSME is connected to
a switch.

TIP: If a software change caused a loop (a loop backwards in the program) that can not be stopped any more
by the software tools simultaneously pushing the RSE and stop command over the CI20 help to program out of
a never ending loop.

The RS20 Communication between PC20’s

The RS20 card is a bidirectional serial interface card that can be used for remote I/O with a
passive slave construction or it can be used between to PLC’s for data exchange in a
Master/Slave configuration. The data exchange between two PLC’s is the most used option and
will be explained in the subchapter.
The RS20 can exchange up to input and/or output 64Nibbles of with an other PLC. The SMA
address these 64 Nibbles are positioned is configured by the MID address on the backpanel of the
PLC rack. Normally the RS20 is addressed on Page 1 to 3, this is done because the shortage of
bits that can become a problem in a large PC20 PLC program. The RS20 does on communication
cycle per PCL scan cycle but there are applications in which the RS20 was activated more the
once in a plc cycle in order to copy more data at once. The RS20 also has a start input that can
be connected to the 24VDC or to an output of the PLC program, if this is not “1” (high) the
communication will not work.
In a Master slave configuration it is necessary to identify the Master and the Slave. This is done
by means of the MID solder pads (MID 1 to MID 5) that are not used because the lowest logical
addressing pad is MID 6 (Address 64). These pads are used in the following way:
MID 1 Soldered RS20 is a active slave Mode B
MID 2 Soldered RS20 is a passive slave Mode C
MID 1 and MID 2 not soldered RS20 is the Master Mode A

The SCIO solder pads identify the data exchange input and output area’s of the RS20 cards.
The SCIO setting is presented in the following table.

Ref no.

Date

Page 13/

SCIO code Master Active Slave Passive Slave
M 3 2 1 0 Output Input Input Output Input Output
00 0 0 0 0 Not allowed Not allowed Not allowed
01 0 0 0 1 4 60 4 60 4 60
02 0 0 1 0 8 56 8 56 8 56
03 0 0 1 1 12 52 12 52 12 52
04 0 1 0 0 16 48 16 48 16 48
05 0 1 0 1 20 44 20 44 20 44
06 0 1 1 0 24 40 24 40 24 40
07 0 1 1 1 28 36 28 36 28 36
08 1 0 0 0 32 32 32 32 32 32
09 1 0 0 1 36 28 36 28 36 28
10 1 0 1 0 40 24 40 24 40 24
11 1 0 1 1 44 20 44 20 44 20
12 1 1 0 0 48 16 48 16 48 16
13 1 1 0 1 52 12 52 12 52 12
14 1 1 1 0 56 8 56 8 56 8
15 1 1 1 1 60 4 60 4 60 4

TIP: If addressing the RS20 cards in a communication configuration between two PLC’s causes
problems. Replace the program by a minimum test program that only performs an I/O scan and
check the complete SMA data area for data value’s different then “0”.I this way addressing errors
and defect cards or backpanels can be detetcted. An example of a minimum test program is
presented in the following lines.
0 AND 0.1
1 LIO 2511
2 END 4

It is sufficient to write down the original program lines 0 to 2, and restore these after the
problem is solved.

The PM25 Servo positioning

The PM25 is used for servo positioning control and is not explained in this document. The PM25 is
complex and needs more then a short introduction to be able to work with. (12nc 8122 968
5013)

The VI20/21/22 Bidirectional serial interface

The VI21is a bidirectional serial interface card. This card can be used as a communication card
but as a co-processor that can perform special tasks for the PC20 PLC.

The VI21 is programmed in a similar way as the PC20 but has some restrictions. The data
exchange with the PC20 PLC is arranged by means of a control register that is mapped on the
SMA of the PC20. The PC20 starts the VI20 and waits for a Ready signal, then the PC20 knows
new data is received from the VI21 and starts the VI21 again. Ect.
The program has to transferred on to eproms (2) and they need to be placed in the specified
sockets in the VI20. Standard software modules are available, for RS232 ,RS485, ect.
Online debugging is not possible, and make troublesome to program the VI20.
The PC20 defines in this control register a data exchange area that the VI21 can use to obtain its
data from and to which the VI21 can write the results.

Ref no.

Date

Page 14/

The control register bit functions are.

SYMBOL VI in or out Description
VIR out Vi Ready VIR=1, VI20 in idle state
Ci0,1,2 out General purpose control bit originating in VI20
xx No asignment
CO0,1 in General purpose control bit originating in PC20
VIS in VI start, (if VIR=”1”) Start VI20 on edge VIS
I/O in I/O = “0” data from SMA to VI buffer . I/O = “1”

data from VI buffer to SMA
A5 –A10 in Location of the SMA area in the PC20. same

addressing principle as MID5 to MID10

The VI21 Bidirectional serial/network interface

Like the VI20 but with PPCCOM network options and more standard software modules available.

The VI22 Bidirectional modbus interface

Like the VI21 but only with predefined Modbus network options and more standard software
modules available.

The Analog Input /Output cards

For the working with analog value’s in the PC20 the following PC20 cards listed in the table below
are available. Use the datasheets for the exact wiring and handling these PC20 cards.

AD20 PC20 card analog inputs 8 , 0..10 V , 0..20 mA , 4..20 mA , 4 digits per input
1000bit range, each channel scantime 0,1 ms

AD21 PC20 card analog inputs 8, 0..10 V , 0..20 mA , 4..20 mA , 4 digits per input
1000bit range, each channel scantime 0,1 ms, R.C. time 0,5 ms

AI20 PC20 card analog input 1 ,0..10 V 0..20 mA 4..20 mA, digits per input
adjustable 1000bit range/ scantime 0,04 ms

DA20 PC20 card analog outputs 8, 0..10 V, 0..20 mA , 4..20 mA, 4 digits per output
1000bit range

DA21 PC20 card analog outputs 4, 0..10 V, -10V..10V ,max 20 mA , 3 digits per
output

The DM20/21/22/23 memory cards

Because the PC20 PLC system is not equipped with a large memory and does not have instructions to handle
large quantities of data. If large data handling is required the DM20 /21/22/23 memory cards can be used for
these data handling functions.
The minimum configuration consists of the DM20 card in combination of one of the storage cards DM21/22/23,
depending on the desired data specification required. The maximum data storage in any configuration is 1Mb.
The DM20 controls the data exchange with the PC20 for the data storage modules (DM21/22/23). A 16 word
control register that is configured with the MID solder paths on the location of the DM20 is used to define the
following elements of the data exchange commands,

Ref no.

Date

Page 15/

• SMA begin address data exchange area.
• SMA end address data exchange area.
• DM memory begin address.
• Control bits for read and write.

This control register is filled in by the PC20 program and the data is exchanged with the DM cards on the by the
PC20 defined area’s. Often special read and write subroutines are used for exchanging the data , in that case
the numeric addressing information is hidden in the subroutines and symbolic indexes can be used for the
variables.

REMARK: This feature opens the possibility to read and write in a table based on a variable index. This is a
feature that is not foreseen in the PC20 instruction set.
REMARK: Because the DM20 works with a 8Bit data words and the PC20 with 4bit Nibbles it is important
always to check the sequence of the LSD and MSD.

DM card cards and attributes are:
DM20 PC20 card Data memory controller 1Mb Max
DM21 PC20 card Data memory storage 64Kram , 64Keprom. Bat backup
DM22 PC20 card Data memory storage 128Kram .Bat backup
DM23 PC20 card Data memory storage 128Keprom
BIDM23 DM20 backpanel for use in a PC20 rack configuration
BIDM20/21/22 DM20 backpanel cable for use in a PC20 rack configuration

The EC20 high speed counter card

Pending.

Ref no.

Date

Page 16/

4.PLC Software and Software Tools

Online changing the PC20 program is possible but not easy, and has to be performed careful in a
running application. An error is easily made and an error can easily make the PC20 PLC system
crash.
If downloading is necessary the PLC has to be stopped any way. If a short stop is required the
swapping of MM.. cards that contain the program is recommendable.

4.1The Instruction set

In this subchapter the instruction set is explained briefly for a more complete explanation check
the PC20 user manual. The function of each instruction is explained and some examples are
given how they are normally used. For a short list of the instruction set see Appendix C
Many different sequences can be build from a combination of instructions of the PC20. The more
common used program sequences will be described in the following sub chapters. Other special
tricks s that use the instruction set very effectively like copying 8 Nibbles instead of the
Maximum of 4 in one program chain are not explained.

The logic instructions AND, OR, AND NOT, OR NOT, TRIG

In this chapter the logic instructions are explained. Because the PC20 has no brackets to control
the sequence of executing the logic instructions, the sequence or chain in which they are placed
is eminent for the result of the logic program.
A chain mostly exists of a chain of logic instructions that influences the RR (result register) and is
followed by a Execute instruction that copies the RR to the operand of the Execute instruction.
If “AND” and “OR” instructions are used in a combination the result can always be seen as a “OR”
logic with one output and multiple ‘AND” chain inputs.
See Example 10.0 = (0.1*0.2) + (1.0*1.1*1.2) + 2.0

figure

The Software code in the PC20 look like this

1000 AND 0.1
1001 AND 0.2
1002 OR 1.0
1003 AND 1.1
1004 AND 1.2
1005 OR 2.0
1006 EQL 10.0

In the PC20 no other construction is possible. A problem like 11.0 = (3.0 + 3.1) * (4.0 + 4.1)
can only be solved by help bits or by rewriting the logic formula
Solution with helpbits:
1000 AND 3.0
1001 OR 3.1
1002 EQL H.1

1010 AND 3.0
1011 OR 4.1
1012 EQL H.2

1020 AND H.1

Ref no.

Date

Page 17/

1021 AND H.2
1022 EQL 11.0

Solution with rewriting the logic formula:
11.0 = (3.0 + 3.1) * (4.0 + 4.1) = 3.0*4.0 + 3.0*4.1 + 3.1*4.0 + 3.1*4.1

1000 AND 3.0
1001 ND 4.0
1002 OR 3.0
1003 AND 4.1
1004 OR 3.1
1005 AND 4.0
1006 OR 3.1
1007 ND 4.1
1008 EQL 11.0

Both solutions have disadvantages.

The TRIG or trigger instruction is used to generate a rising or falling edge signal that is only one
PLC cycle or scan high.
The bit (operand) used in the TRIG instruction itself keeps the same value as the logic chain of
program lines preceding the TRIG instruction but the RR that is affected by the TRIG is only one
plc cycle High.
Solution Rising Edge
1000 AND 1.0
1001 TRIG 100.0 = Copy of 1.0 with one plc cycle delay
1002 EQL 12.0 = Rising Edge Signal of 1.0 one scan high

Solution Falling Edge
1000 AND NOT 1.0
1001 TRIG 100.1 = Copy of NOT 1.0 with one plc cycle delay
1002 EQL 12.1 = Falling Edge Signal of 1.0 one scan high

 Execute instructions EQL,EQL NOT, SET1,SET0, FETCH BIT,STORE BIT

In this chapter the bit execute instructions are explained.
The EQL instruction copies the RR to the Operand following the instruction
The EQL NOT instruction copies the inverse of the RR to the Operand following the instruction
Both these instructions are not depended of the result of RR for its execution

The SET1 instruction sets the SMA operand to “1” if the RR is TRUE
The SET0 instruction sets the SMA operand to “0” if the RR is TRUE

The FETCH BIT instruction copies the SMA operand to the A-Register. First Fetch instruction
resets the A-register
The STORE bit is often used to store the result following on arithmetic operations.
If preceded by Fetch instruction FHB,FHD or FHC ,the STORE BIT instruction copies the A-
Register bit to the SMA operand. First Fetch instruction resets the A-register
If preceded by shift instruction SFL ,SFR ,the STORE BIT instruction copies the Overflow OVF bit
to the SMA operand.
If preceded by compare instruction CMP ,the STORE BIT instruction copies “Compare result =
equal” to the SMA operand. “1” is equal.
If preceded by divide instruction DIV ,the STORE BIT instruction copies M/Q Register to the SMA
operand.

Ref no.

Date

Page 18/

Example:
1000 AND 0.1 Execute Always
1001 FHC 8 = Copy 8 to A-Register
1002 CMP 1000 = Compare SMA 1000 with A-Register
1003 STB 12.1 = “1” if Compare SMA 1000 = A-Register

Execute instructions FETCH CONSTANT, FETCH DIGIT, STORE DIGIT

In this chapter the Nibble execute instructions that move Nibble data are explained.
All of these instructions are only executed if RR is true. And the first of its kind resets the A & B
register.
FETCH CONSTANT copies a constant program value to the A-Register (Also the B-register)
FETCH DIGIT copies a Nibble from the scratch path memory to the A-Register (Also the B-
register)
STORE DIGIT copies a Nibble from the A-Register to the scratch path memory . If preceded by a
COMP/DIV/ADD/SUB/MULT instruction the first will start the actual COMP, ADD,SUB, DIV , MULT
and if done the result from A-register or M/Q Register will be copied to the SMA.

Execute instructions ADD, SUBTRACT, DIVIDE, MULTIPLY

In this chapter the Nibble execute instructions that perform arithmetic operations are explained.
The actual arithmetic operation is performed on the first STORE instruction. The Reason for the
functioning is that up to 4 arithmetic operations can be executed and only if the first STD
instruction is performed the CPU knows that no more arithmetic operations will follow.

ADD DIGIT copies a Nibble from the scratch path memory to the B-Register. On the first STD
instruction the A-Register + B-Register will be placed in the A-Register.

Example:
1000 AND 0.1 Execute Always
1001 FHC 8 = Copy 8 to A-Register
1002 ADD 1000 = ADD SMA 1000 place in B-Register
1003 STD 1001 = ADD A-Reg + B-Reg = A-Reg and copy A-Reg to SMA

SUB DIGIT copies a Nibble from the scratch path memory to the B-Register. On the first STD
instruction the A-Register - B-Register will be placed in the A-Register.

Example:
1000 AND 0.1 Execute Always
1001 FHC 8 = Copy 8 to A-Register
1002 SUB 1000 = SMA 1000 place in B-Register
1003 STD 1001 = SUB A-Reg - B-Reg = A-Reg and copy A-Reg to SMA

DIV DIGIT copies a Nibble from the scratch path memory to the B-Register. On the first STD
instruction the A-Register / B-Register will be placed in the M/Q-Register. The Rest value of the
deviation will be placed in the A-Register. See PC20 user manual.

Example:
1000 AND 0.1 Execute Always
1001 FHC 8 = Copy 8 to A-Register
1002 DIV 1000 = SMA 1000 place in B-Register
1003 STD 1001 = A-Reg / B-Reg = M/Q-Reg and copy M/Q-Reg to SMA

Ref no.

Date

Page 19/

MUL DIGIT copies a Nibble from the scratch path memory to the B-Register. On the first STD
instruction the A-Register * B-Register will be placed in the M/Q-Register.See PC20 user manual
for more details.

Example:
1000 AND 0.1 Execute Always
1001 FHC 8 = Copy 8 to A-Register
1002 MUL 1000 = SMA 1000 place in B-Register
1003 STD 1001 = A-Reg * B-Reg = M/Q-Reg and copy M/Q-Reg to SMA

Execute instructions COMPARE, COUNTDOWN, COUNTUP

In this chapter the Nibble execute instructions that perform counter and timer operations are
explained.

COMPARE DIGIT compares a Nibble from the scratch path memory with the value in the A-
Register. On the first STD instruction the result of comparing the A-Register with the SMA is
placed in the COMP-Register will be copied to the SMA following the STD instruction. See PC20
user manual for more details.

Example:
1000 AND 0.1 Execute Always
1001 FHC 8 = Copy 8 to A-Register
1002 FHC 8 = Copy 8 to A-Register
1003 CMP 1000 = Compare 1000 and place in COMP-register
1004 CMP 1001 = Compare 1001 and place in COMP-register
1005 STD 100 = Compare A-Reg with SMA1000/1 = COMP-Reg and
copy to 100

The result of the comparison is:
100.0 = 1 Then A-Register = SMA (Equal)
100.1 = 1 Then A-Register < SMA (Smaller Then)
100.2 = 1 Then A-Register > SMA (Larger Then
100.3 = 1 Then A-Register # SMA (Not Equal)

Remark1: The comparison always has to start with the (MSD) the most significant digit
Remark2: Because of the size of the A-register up to 4 COMP instructions are possible in a
sequence.

COUNT UP Counts up the value of SMA directly. The actual counting is performed in the M/Q
Register and then placed back to SMA. The counting sequence is first performed on the LSD and
then on the MSD so overflow will be handled correctly.

Example:
1000 AND 0.1 Execute Always
1001 CNU 1001 = place in M/Q-register +1 back to SMA
1002 CNU 1000 = on Overflow place in M/Q-register +1 back to SMA
1003 STB 14.0 = Overflow(>99) is copied to SMA 14.0

COUNT DOWN Counts down the value of SMA directly. The actual counting is performed in the
M/Q Register and then placed back to SMA. The counting sequence is first performed on the LSD
and then on the MSD so overflow will be handled correctly.

Example:

Ref no.

Date

Page 20/

1000 AND 0.1 Execute Always
1001 CNU 1001 = place in M/Q-register -1 back to SMA
1002 CNU 1000 = on Overflow place in M/Q-register -1 back to SMA
1003 STB 14.1 = Overflow (<0)is copied to SMA 14.1

Remark1: If not AND 0.1 is used but a clock signal that generates a High edge every second a
timer function can be made. This is the way timers are constructed in the PC20.
Remark2: The number of sequential Count instructions is only limited by number of program
lines, and not by the size of one of the registers like in the other instructions.

Execute instructions SHIFT LEFT, SHIFT RIGHT

In this chapter the Nibble execute instructions that perform shift operations are explained.
SHIFT LEFT Moves the bits in a Nibble one position to the left. From .0 to .3. If .3 bit is high
during the Shift and OVF overflow is generated that can activate the next Shift instruction.

Example:
1000 AND 0.1 Execute Always
1001 SFL 20 in SHIFT-register “shift” back to SMA. SMA.3 to OVF
1002 SFL 21 if OVF, in SHIFT-register “shift” back to SMA.3 to OVF
1003 STB 16.0 Overflow is copied to SMA 16.0

SHIFT RIGHT Moves the bits in a Nibble one position to the right. From .3 to .03. If .0 bit is high
during the Shift and OVF overflow is generated that can activate the next Shift instruction.

Example:
1000 AND 0.1 Execute Always
1001 SFR 20 in SHIFT-register “shift” back to SMA. SMA.0 to OVF
1002 SFR 21 if OVF,in SHIFT-register“shift” back to SMA. SMA.0 to OVF
1003 STB 16.1 Overflow is copied to SMA 16.1

Remark1: The number of sequential Shift instructions is only limited by number of program lines,
and not by the size of one of the registers like in the other instructions.

Jump instructions JUMP TO SUBROUTINE TRUE/FALSE ,RETURN

In this chapter the jump to subroutine are explained.
The JUMP TO SUBROUTINE instruction is limited in the address of the subroutine because in the
instruction only 13 bits are available for the subroutine address. This restricts the subroutine
begin address area from 0 until 2047.
JUMP TO SUBROUTINE AT FALSE is identical to jump at subroutine at true only the go to
condition is inverse.
The RETURN instruction is used to mark the end of a subroutine. It performs a jump back to the
line after the line the subroutine call was on.

Example:
1000 AND 0.1 Begin Subroutine
..
1010 RET Return to Position Subroutine call was executed
..
5001 AND 0.1 Condition to go to subroutine
5001 JSAT 1000 Subroutine Call

Ref no.

Date

Page 21/

Remark: The return address is stored in a return stack that is only 4 positions large. So the
maximum nesting depth of the subroutines is 4.

Jump instructions JUMP RELATIVE TRUE/FALSE

In this subchapter the jump to subroutine are explained.
The jump relative forward false and jump relative backward false are identical instructions with
only one difference that the jump is in an other direction. The Jump to relative instruction is
limited in the size of the jump because in the instruction only 13 bits are available for the
subroutine address. This restricts the maximum relative jump to 2047 lines. If a larger jump is
required a extra jump to a “jump area in between is necessary”

Example:
1000 AND 0.1 Condition
1001 JFRF 199 Relative jump to 1001 + 199

1200 AND 0.1 First line not jumped over

Remark1: The RR status if the jump is performed is True.
Remark2: a Jump backward is always with the risk of placing the PLC in a loop that it can not get
out. So Caution is recommended when using the jump backwards.

 System Instructions END,LAST INPUT OUTPUT and NO OPERATION

In this subchapter the END , LIO and NOP are explained. The instructions LIO and END are used
together to define the Inputs and output that need to be updated during the I/O cycle. But also if
other data coming from SCADA or an other PLC needs to be updated. Also is it possible by means
of these instructions to update data from the I/O in during the PLC execution program.

Example::
0000 AND 0.1
0001 LIO 123
0002 END 120

This is a small program that reads the I/O from SMA 120 until SMA 123. No other inputs and
outputs are updated. This functionality is only achieved if both instructions are used combined as
shown above. The LIO is often used on the first lines of the program to identification in network
environments PPCCOM the value in the LIO instruction identifies the PLC for the network. Also
the LIO is often used to place a version number in the PLC for version control.

The NO OPERATION instruction does affect the result of a logic chain in the program.

Example
1000 AND 17.0
1001 AND 17.1
1002 EQL 18.0

Is not the same as:
1000 AND 17.0
1001 NOP
1002 AND 17.1

Ref no.

Date

Page 22/

1003 EQL 18.0

Remark: The LIO if not used with end is a better No Operation then the NOP instruction itself

4.2Program examples

For the examples PDS35 program examples are used. In the PDS35 program it is possible to use
instruction names of different lengths. The name of the instruction can differ from one example
to the other. For example the following “dialects” in the instruction set have the same meaning.
Count Up: CU, CNU, CNTU
Shift Right: SFR,SHFTR
Ect.
The compiler of the PDS35 program will not except instructions of 5positions long if it is set on
instructions of 3positions long and generate an error.
More program examples can be found in the PC20 User manual.

 AND , OR EQL

The following logical hardware circuits are programmed with the PC20 instruction set.

EXAMPLE 1:

&

&

1.0

1.1

1.2

2.0

2.1

2.2

3.0

4.0

100.0

101.0

In formula form:
NOT 101.0 = 100.0 = (1.0*1.1* NOT 1.2) + (NOT 2.0* 2.1*NOT 2.2) + 3.0 + NOT 4.0

1000 AND 1.0 Start of logic chain
1001 AND 1.1
1002 ANN 1.2
1003 ORN 2.0 Start new OR chain
1004 AND 2.1
1005 ANN 2.2
1006 OR 3.0
1007 ORN 4.0
1008 EQL 100.0

Ref no.

Date

Page 23/

1009 EQN 101.0

EXAMPLE 2:
The following equivalent of a hardware diagram is more difficult for the PC20 instruction set.

&

1.0

1.1

2.0

2.1

3.0

200.0

201.0

In formula form:
NOT 201.0 = 2100.0 = (1.0+ NOT 1.1) * (NOT 2.0+ 2.1) * 3.0
The form (1.0+ NOT 1.1) * (NOT 2.0+ 2.1) * 3.0 has to be converted to

=(1.0*NOT 2.0* 3.0)+(1.0*2.1* 3.0)+(NOT1.1*NOT 2.0* 3.0)+(NOT 1.1*2.1* 3.0)

The following is the representation of a hardware diagram equivalent that easily can be
programmed in the PC20 instruction set. Clear is the disadvantage for the readability of the
software program

Ref no.

Date

Page 24/

&

&

1.0

3.0

2.0

2.1 200.0

201.0

&

&2.1

3.0

3.0

3.0

1.0

1.1

1.1

2.0

The software in the PC20 would look like the following program.

1000 AND 1.0 Start of logic chain
1001 ANN 2.0
1002 AND 3.0
1003 OR 1.0 Start new OR chain
1004 AND 2.1
1005 AND 3.0
1006 ORN 1.1 Start new OR chain
1007 ANN 2.0
1008 AND 3.0
1009 ORN 1.1 Start new OR chain
1010 AND 2.1
1011 AND 3.0
1012 EQL 200.0
1013 EQN 201.0

An other way of programming this logic diagram is making use of help bits. This would result in
the following program.

1000 AND 1.0 Start of logic chain 1
1001 ORN 1.1
1002 EQL 9.0 Help bit end of logic chain1

1003 ANN 2.0 Start of logic chain 2
1004 OR 2.1
1005 EQL 9.1 Help bit end of logic chain2

1006 AND 9.0 Help bit end of logic chain1
1007 AND 9.1 Help bit end of logic chain2

Ref no.

Date

Page 25/

1008 AND 3.0
1009 EQL 200.0
1010 EQN 201.0

The disadvantage is the need of extra help bits. But the program logic is better to see if it is
compared with the original diagram.
REMARK: Other PLC’s like the Siemens S7 PLC’s interpreted the logic AND , OR structures in a
different way and conversion from one to the other system is not easy for that reason. For each
chain the actual logic aim has to be checked.

 CLOCK TIMING SIGNALS

The Clock signals for timing purposes are available in the SMA addresses 0,3 to 1.3. This bitmap
signal specification is different for each PC20 PLC type, please check the specific data sheets
before using these bits.
The Clock signal bits in the PC20 Rack model are:
SMA 0.3 = 0.01 Sec (0.01Sec High / 0.01Sec Low)
SMA 1.0 = 0.1 Sec (0.1Sec High / 0.1Sec Low)
SMA 1.1 = 1.0 Sec (1.0Sec High / 1.0Sec Low)
SMA 1.2 = 10 Sec (10Sec High / 10Sec Low)
SMA 1.3 = 60 Sec (60Sec High / 60Sec Low)

In this example the following edge signals are programmed:
CLP01S 100mSEC CLOCK PULSE
CLP01S - 100mSEC CLOCK PULSE NEG. EDGE
CLP50MS 50mSEC CLOCK PULSE
CLP1S 1SEC CLOCK PULSE
CLP10S 10SEC CLOCK PULSE
CLP1MIN 60SEC CLOCK PULSE
CLP3S 3SEC CLOCK PULSE

The most of the edges are programmed with the TRG and EQL instructions. But for the 3Sec edge
pulse also the Countdown instruction is used.

Symbol list presentation:
EQ C10MS = 0.3 CLOCK 10 MSEC.
EQ C100MS = 1.0 CLOCK 100 MSEC.
EQ C1S = 1.1 CLOCK 1 SEC.
EQ C10S = 1.2 CLOCK 10 SEC.
EQ C60S = 1.3 CLOCK 1 MIN.

Program example:
* **********************
HD PLC PULSE CYCLE CLOCKS S
* ++++++++++++++++++++++
*
* CLOCK PULSE 100 MSEC.
*
01966 AND C100MS CLOCK 100 MSEC.
01967 TRG TRG01 TRIGGER
01968 EQL CLP01S 100mSEC CLOCK PULSE
*
01969 ANN C100MS CLOCK 100 MSEC.
01970 TRG TRG02 TRIGGER

Ref no.

Date

Page 26/

01971 EQL CLP01S- 100mSEC CLOCK PULSE NEG. EDGE
*
* CLOCK PULSE 50 MSEC.
*
01972 AND CLP01S 100mSEC CLOCK PULSE
01973 OR CLP01S- 100mSEC CLOCK PULSE NEG. EDGE
01974 EQL CLP50MS 50mSEC CLOCK PULSE
*
* CLOCK PULSE 1 SEC.
*
01975 AND C1S CLOCK 1 SEC.
01976 TRG TRG03 TRIGGER
01977 EQL CLP1S 1SEC CLOCK PULSE
*
* CLOCK PULSE 10 SEC. TEMP NOT USED BIT 2.2 USED INTERNAL CP25
* !!! SEE DATA SHEET FOR JUMPER SETTINGS
*
01978 NOP
*01975 AND C10S CLOCK 10 SEC.
*01976 TRG TRG04 TRIGGER
*01977 EQL CLP10S 10SEC CLOCK PULSE
*
* CLOCK PULSE 1 MIN. TEMP NOT USED BIT 2.3 USED INTERNAL CP25
* !!! SEE DATA SHEET FOR JUMPER SETTINGS
*
01979 NOP
*01978 AND C60S CLOCK 1 MIN.
*01979 TRG TRG05 TRIGGER
*01980 EQL CLP1MIN 60SEC CLOCK PULSE
*
* CLOCK PULSE 2 SEC.
*
01980 AND CLP3S 3SEC CLOCK PULSE
01981 OR BSYSRES SYSTEM RESET (FIRST PLC CYCLE)
01982 FC 03
01983 SD CLK3SEC CLOCK 2 SEC DIGIT
01984 ST0 CLP3S 3SEC CLOCK PULSE
*
01985 AND CLP1S 1SEC CLOCK PULSE
01986 CD CLK3SEC CLOCK 2 SEC DIGIT
01987 SB CLP3S 3SEC CLOCK PULSE
*

 COUNTER&TIMER

Because the PC20 instruction set the has no specific timer instruction like other PLC’s normaly
have the timer has to be programmed in the same way as a counter is programmed. In the
following example a timer (counter with 100mSec count pulse) that consists of three program
parts a preset value (0) part followed by a compare the timer value and a counting up the timer
(counter) on the 100mSec clock pulse.
The timer is started if P51RTM = “TRUE” (1)
The timer is elapsed if P51TIM P51 = “TRUE” (1)
A TRG function is used with DUM10_0 in order to reset the timer (counter) value on timer is
elapsed.

Ref no.

Date

Page 27/

REMARK: The CNU and the CMP instruction sequence is always performed with the LSD first and
the MSD as last in the sequence.

* PART 1 RESET STEP TIME OUT TIMER
05700 ANN P51TIM P51 TIME OUT STEP ENDED
05701 TRG DUM10_0 PS DUMMY TRIGGER
05702 FHC 0
05703 STD P51TO0 P51 STEP TIMEOUT 10^0
05704 STD P51TO1 P51 STEP TIMEOUT 10^1
05705 STD P51TO2 P51 STEP TIMEOUT 10^2
*
* PART 2 TEST ON TIME OUT
05706 AND P51RTM P51 TIME OUT STEP ON
05707 FHD P51PT0 P51 PRESET STEP TIMEOUT 10^0
05708 FHD P51PT1 P51 PRESET STEP TIMEOUT 10^1
05709 FHD P51PT2 P51 PRESET STEP TIMEOUT 10^2
05710 CMP P51TO0 P51 STEP TIMEOUT 10^0
05711 CMP P51TO1 P51 STEP TIMEOUT 10^1
05712 CMP P51TO2 P51 STEP TIMEOUT 10^2
05713 STB P51TIM P51 TIME OUT STEP ENDED
*
* PART 3 TIME OUT TIMER
05714 AND P51RTM P51 TIME OUT STEP ON
05715 ANN P51TIM P51 TIME OUT STEP ENDED
05716 AND CLP01S 100mSEC CLOCK PULSE
05717 CNU P51TO0 P51 STEP TIMEOUT 10^0
05718 CNU P51TO1 P51 STEP TIMEOUT 10^1
05719 CNU P51TO2 P51 STEP TIMEOUT 10^2

 SUBROUTINES

Subroutines are “small PLC programs” that perform a specific function that is more often used in
the PLC program or that contain complex calculations or actions that would only make the main
program less readable and are placed in a subroutine for that reason.
In the program a call to the subroutine is placed. The program continues with the subroutine
program and when ready the program continues on the program line following the line the
subroutine call was on.

Example:
1000 AND 0.1 Begin Subroutine
..
1010 RET Return to Position Subroutine call was executed
..
5001 AND 0.1 Condition to go to subroutine
5001 JSAT 1000 Subroutine Call

Often used subroutines are:
00157 SUB. COPY A-REGISTER TO MAIN PARAMETER NUMBER A
00161 SUB. COPY A-REGISTER TO SUB PARAMETER NUMBER A
00165 SUB. CALCULATE DM ADDRESS WITH PARAMETER NUMBER AS INPUT 000000 A
00227 SUB. CALCULATE DM ADDRESS OF THE SCREEN NO OFFSET A
00274 SUB. WRITE DATA FROM A SPECIFIED SMA AREA TO THE DM A
00298 SUB. READ PARAMETER FROM THE DM TO THE SPECIFIED SMA AREA A

Ref no.

Date

Page 28/

00307 SUB. DECO ROUTINE (1 DIGIT HEX --> 1 BIT OUT OF 16 S
00332 SUB. DECODE 2-DIGIT BCD INPUT NUMBER TO 1 OUT OF 64 BITS S
00402 SUB. STEP UP STEPCOUNTER OR GO TO STEP S
00525 SUB. INCREMENT THE CORRESPONDING PROGRAMSTEPCOUNTER S
01275 SUB. SUBROUTINE ERROR HANDLER MSH (16-BIT) S
01315 SUB. SUBROUTINE ERROR HANDLER MSH1 (4-BIT) S
01345 SUB. SUBROUTINE ERROR HANDLER MSH2 (1-BIT) S
01431 SUB. CALCULATE DM-INDEX SHIFT 010694 S
01454 SUB. WRITE SCREEN-DATA SHIFT 150794 S
01478 SUB. READ SCREEN DATA SHIFT 010694 S
01503 SUB. WRITE SCREEN DATA FROM SHIFT TO RS20 NEXT SECTION 240694 S
01528 SUB. WRITE SCREEN DATA FROM RS20 PREV SECTION TO SHIFT 240694 S
01706 SUB. CALCULATE DM ADDRESS WITH DISPLAY INFO NUMBER AS INPUT A
01730 SUB. READ DISPLAY INFO FROM DM INFO TABEL INTO SMA AREA A
01734 SUB. WRITE DISPLAY INFO FROM SMA AREA TO THE DM INFO TABLE A
01739 SUB. SET BIT 0 IN ERROR BIT TABLE A
01759 SUB. RESET BIT 0 FROM DIGIT A
01783 SUB. DETMOD DETERMINE MODE OF AUTOMATION MODULE A
01834 SUB. COMPARE TWO TEMPERATURES 230794 A
01875 SUB. CHUCK DRIVER 140994 A
01904 SUB. LIFT DRIVER 050894 A

This list of subroutines is generated with the use of the PDS35 header function. Clear to see that
the PC20 uses a lot of subroutines to build the required functionality. But important is that is
made clear how the subroutines work otherwise the advantage of multiple use is lost in the extra
time is put in to understand the functioning of the subroutines.

REMARK: The use of many subroutines causes a longer PLC Cycle time.
REMARK: The nesting of subroutines is only allowed 4 deep. That means that the calling of
subroutines within subroutines before the previous subroutine RET function was encountered is
only allowed 4 times.

 CALCULATIONS

Calculating in the PC20 PLC instruction text is complex if larger numbers are used in the
calculation. For calculation the PC20 PLC can be compared with a microprocessor, all the
calculations are possible but all exceptional situations in the calculation need toe be checked in
the software and appropriate action needs to be taken to achieve the correct result. And all of
this has to be done in the PC20 application software.
The calculations are often done in subroutines. To show the complexity of the calculations the
following program is an example of a calculation of an index value for reading /writing data from
a DM card ,that needs one multiply and one addition.

* *****************************
HD SUB. CALCULATE DM-INDEX SHIFT 010694 S
* +++++++++++++++++++++++++++++
* IN : SHIFTREGISTER NUMBER 2 DIGITS IN A-REGISTER (00-30)
* : DM OFFSET 0009000 - 0009999
* OUT: DM-ADDRESS IN DM-REGISTER DH EN DL
*
* ADDRESS =(22*DISPLAY INFO NUMBER) +DM OFFSET(0009000)
*
*
01431 CALCIDAND ALWAYS ALWAYS ACTIVE=(1)

Ref no.

Date

Page 29/

01432 MUL N2 NUMBER 2
01433 MUL N2 NUMBER 2
01434 STD DDUM_00 DUMMY
01435 ADD N0 NUMBER 0
01436 ADD N0 NUMBER 0
01437 ADD N0 NUMBER 0
01438 ADD N9 NUMBER 9
01439 STD DMCR14 DESTINATION ADDRESS 10^0
01440 STD DMCR13 DESTINATION ADDRESS 10^1
01441 STD DMCR12 DESTINATION ADDRESS 10^2
01442 STD DMCR11 DESTINATION ADDRESS 10^3
01443 FHC 0
*
01444 AND OVERFL ARITMATHIC OVERFLOW
01445 FHC 1
*
01446 AND ALWAYS ALWAYS ACTIVE=(1)
01447 ADD DM_OFF4 DM OFFSET 10^4
01448 ADD DM_OFF5 DM OFFSET 10^5
01449 ADD DM_OFF6 DM OFFSET 10^6
01450 STD DMCR10 DESTINATION ADDRESS 10^4
01451 STD DMCR09 DESTINATION ADDRESS 10^5
01452 STD DMCR08 DESTINATION ADDRESS 10^6

01453 RET

For explanation of the calculation possibilities check the PC20 user manual.

4.3The program layout

That PC20 PLC consists of one large list of instructions that are executed over and over again
each PLC cycle. This is a not always a desirable situation. Often some parts of the software are
activated only during start up and others are only activated if the start up routines were executed
successfully.
For the explanation of the program structure the possibilities to use labels to jump to instead of
absolute line numbers to jump to as used in PDS35 are used.
REMARK: The first Cycle of the PC20 program the RR line number 0 is true, all other plc cycles
the RR will be false.
In the PC20 user manual these program setups are explained with more detailed information.

 Standard program structure

Simple PLC program set up with a initialization program part.

0000 JFRF MAIN
Initialization Program

0010 MAIN AND 0.1

1000 LIO 123
1001 END 100

Only the first PLC scan the plc lines 1 to 9 are executed. On line 1001 following the END
instruction the program counter will continue on line number 0000. But because RR of line 0000

Ref no.

Date

Page 30/

is only true the first Plc cycle the program counter will continue on line number 10 were the MAIN
program is located.

 Often used program structure

This program layout uses the feature that if more then 5 subroutine calls are generated the first
in is lost. What in this case does not matter because this call in on line number 0000 and does
not need to be returned to.
Advantage of the structure is the possibility to execute reading inputs and writing outputs can be
done whenever desired.

0000 JSAT INIT
0001 RET

Area with LIO/END instructions
0004 I_I LIO b_I reading inputs
0005 END e_I
0006 O_O LIO b_O writing outputs
0007 END e_O

0010 INIT AND 0.1
Initialization Program

0099 JFRF MAIN
Subroutine Area

1000 MAIN AND 0.1
End of program

9000 AND 0.1
9001 JSAT I_I
9002 JSAT O_O
9003 JSAT MAIN

9010 END 0
9011 END 0

The JSAT call to I_I (also O_O) will execute the LIO and END and will go to line number 0000 it
will not execute the JSAT on line number 0000 but it will execute the RET on line 0001 and the
line number following on which the JSAT I_I is located.

The JSAT call to MAIN will go to the line number the MAIN label is placed on and start the Main
Program. The return line number will be placed in the return stack but it will never be retrieved
from the stack because it is not needed for further continuing of the program.

In this way it is possible to read the inputs , execute the Main program and then write the
outputs. Otherwise the dilemma can be first write outputs while the inputs are red but not used
in the main program. (unknown). Or use unreliable inputs in the main program and write outputs
on these unreliable inputs.

REMARK1: Ii is also possible to place a LIO *** on line 0000. The JSAT is then on line 0001. In
this situation a identification in line 0000 is placed for a SCADA or an other master on the
network. Or a version number of the program itself can be placed there. For the functionality of
the program it does not matter.

REMARK2: The double END instruction is used if an online search is performed then the search
stops at the double END. Otherwise the search will continue until the end of the 16K program.

Ref no.

Date

Page 31/

 Start up delay

If a start up delay is required during switching on of the 24VDC switched to sensors and
actuators, a delay timer can be placed in the initialization program. See following example.

*
*
* -------------------------
* DELAY AFTER START OF PC20
* -------------------------
*
00091 AND ALWAYS ALWAYS ACTIVE=(1)
00092 FHC 5
00093 STD POWONT POWER ON TIMER
00094 ST0 S1OPOT OUTPUT POWER ON TIMER
00095 JB1 AND C100MS CLOCK 100 MSEC.
00096 TRG TRG13 TRIGGER
00097 CND POWONT POWER ON TIMER
00098 STB S1OPOT OUTPUT POWER ON TIMER
*
00099 AND S1OPOT OUTPUT POWER ON TIMER
00100 JBF JB1

The program will be locked in this loop until the time is elapsed. During this time other parts of
the equipment can start up, and when they are ready the PC20 will start.

4.4PDS35

TeHa developed the PDS35 software support program for generating a source codes that could
be converted to object programs and could be downloaded and debugged by one program. Also
many functions like Cross references, program contents generation, program comparison and the
generation of documentation of program files are available in PDS35. Also making online
changing is possible in PDS35 but .
In the PDS35 program it is possible to change the setting for all kind of types of the pc20 PLC
family.(e.g. PC20, MC30, MC41 in ram and rom settings)

4.5Developed Software tools by third parties

VHE developed many software tools during the period that many PC20 PLC projects were
executed by VHE engineers. The following programs can be very helpful during creating and
debugging an automation project. However most of the VHE programs are quicker then the
PDS35 programs they do not always give the correct error special during communication , and
mostly they only work for the PC20 rack version.
By VHE developed PC20 Support programs:
Qload = Uploading object from PC20
Qdump = Downloading object into PC20
Qcompare = Comparing object programs
A complete development system with a cross reference more complete the TeHa crossreference.

Other support programs are Fusion general development system used for PC20 and S5 (Pulse).
And PDS5 a graphic development system used by some Philips departments.

Ref no.

Date

Page 32/

TopPromisys was developed by TeHa and had extra features like a oscilloscope function and the
possibility to online monitor with use of the symbolic names from the source program.

Moni.exe was developed by I.Verijdt to be able to monitor data and change data simultaneously.
This is only possible with the other tools from VHE and TopPromisys.
The advantage of Moni is that it is easy to use and has the possibility to store monitor
configuration settings that can be used again a next time (Like VAT table from S7)

Ref no.

Date

Page 33/

5.Converting PC20 to S7 (or other PLC,s)
At the moment there is no conversion tool for converting PC20 to S7. The best way to convert PC20 source
code to a S7 program, is to copy the PC20 source to S7 source and compile the source to a S7 object program.

The following differences have to be taken in account:

The AND ,OR logical structure differs and if complex structures are used they have to be checked.
The PC20 is a fast PLC and the S7 you choose to replace the PC20 has to be able to be just as fast. Therefore
it is important that the other activities like the data exchange with a HMI or Scada do not take to much of the
processor time of the S7 CPU. This can be configured in the S7 system configuration.

The FHD is a conditional instruction while the comparable S7 instruction LOAD is a non conditional is
instruction. This will ask for a specific solution for each PC20 program part that uses FHD instructions or
replace the FHD by a combined JUMP and LOAD instruction over the non conditional S7 program lines.

Conversion is therefore a time consuming activity that needs knowledge of the old PC20 programming system
and knowledge of the new programming system. This often doubles the work load because two programs have
to be studied and checked carefully that the functionality of the systems are the same.

Ref no.

Date

Page 34/

6.Working online with the PC20
The working online with the PC20 is complex and changes online should only be done as you fully understand
the instructions you want to change. If you are able to make small changes online then that is a large
contribution of the possibilities you have in working with the PC20 PLC.
The original way to work online with the PC20 is with the PU30 via the PU21 card or a TTY terminal monitor
that was connected to the PC20 via the CI20 card. Because these working methods had no possibilities to work
symbolic and had no good backup system.
Therefore development tools were created to be able to monitor and debug the PC20 programs online. Some of
the programs are:
PDS5 Development tool
PDS35 For documentation and debugging using Kermit communication program.
TTY VHE developed tool
MONI Data Monitor program with terminal mode with Kermit
TopPromisys With Scope option and Symbolic monitoring option

Because the Kermit like solutions are most like the TTY monitor presentation. The explaining of working online
is based on these programs

The following online actions are interesting to use for debugging when working directly online. These are not all
online commands because the commands can be different depending on the medium (PDS35, Moni , Kermit)
that is used.
Online commands for MC30/31 and MC40/41 can be different and may have restrictions.
If the PU20 is used a step by step mode is also possible.

Command Description action
DL <pma> DUMP LINE from 0 (RETURN then next 16) Present program from line 0 -16
ML <pma num cond> MONITORLINE
ML 0 16 2 MONITOR LINE from 0-16 condition always Monitors lines 0 -16
ML 0 16 1 MONITOR LINE from 0-16 condition true Monitors lines 0 -16 If RR True
MD <SMA num> MONITOR DATA
MD 0 24 MONITOR DATA from Nibble 0 until 24 Monitors data 0 -24
RN RUN
RS STOP
ED EDIT Stop PLC and to edit mode
INS <pma inst SMA> INSERT LINE Insert line PLC in stop
DEL <pma> DELETE LINE Delete line PLC in stop
WL <pma inst SMA> WRITE LINE
DL <pma> DUMP LINE
WD <SMA value> WRITE DATA Write SMA-data

6.1PDS 35 online monitoring

In PDS35 the online TTY mode has the following online options that are shown. A disadvantage is
that the communication is slow because the software refreshes the screen after each
communication action.

Ref no.

Date

Page 35/

In the PDS35 program the online function has a help option in which all possible commands are
presented.

For example command “DL 0” presents the first 0-16 program lines. Each return then presents
the next 16 program lines
Command “ML 0 16 2” monitors the lines 0-16.
Back to PDS35 is with the keys <ESC> <E> <RETURN>
This differs from the normal terminal instructions

6.2MONI online monitoring

Moni is a standalone program that is used for monitoring and debugging. Moni is no development
tool and has no symbolic representation and documentation possibilities.

Ref no.

Date

Page 36/

But Moni is a helpful tool for setting iup a testing configuration that can be stored and reused.
The start up screen tries to connect directly toe the PC20 and is this is the case a screen like
seen in the following picture is presented

It is also possible that the middle colon presents no text but also online data. This is an option
that can be selected with the F3 Function key. Normally the screen is divided in 3 identical
colons. Each colon consists of a SMA address, write SMA data area, actual SMA value.
With a arrow keys the Cursor can placed on that field we want update or force.
If the cursor is in the correct positions. The function keys have the following functions:
F1 Write Data
F3 Text on off toggle for the middle colon.
F4 Directory where MONI configuration file can be stored.
F5 Load a MONI configuration file
F6 Save a MONI configuration file
F8 Goto TTY terminal mode
F9 Switch online on / off toggle
F10 Stop MONIi Program back to DOS
<TAB> Reset input field
Presentation:
“1-8” Number of nibbles to present as Digit
“.” Bit presentation of one Nibble
Write value’s:
0-9,A-F Hex value’s

In the following picture The TTY monitor is presented following on the <F8> key.

Ref no.

Date

Page 37/

On this screen the following commands were executed.
RS RESET stops the PLC in edit mode
RN Places the PLC back in RUN
FA 130.0 FIND ADDRESS if SMA 130.0 (command overwritten by result)
When search for SMA 130.0 is ended the RUN MODE is presented in the screen.

In the Following screen program monitoring is presented.

The “ML 0 16 2” is presented in the previous screen dump.
Back to MONI with the following key combination.
<Ctrl><]> , <C> , <Q> ,<RETURN>
This key combination is specific for the Kermit version used with MONI.

Ref no.

Date

Page 38/

6.3PC20 online tools for Windows XP and W2000

Because the problems that existing program development tools do not work any more,
development of new tools are under construction. A monitor program and a download and upload
program are being developed for Windows XP and windows 2000 professional, but they are still
under construction.
An other option is using a virtual PC program and Run Windows 95/98 under Windows XP or
windows 2000.

Ref no.

Date

Page 39/

7.APPENDICES

7.1Apendix A PLC Hardware environment in Source code

GP ***
GP * PLC HARDWARE ENVIRONMENT INFO:
GP ***
GP PC20 CARD RACK(1) ADRESS SETTINGS REMARKS:
GP 1 CI21 9600/E/2/1
GP 2 MM26 16K EEPROM RAM=ON
GP 3 CP25 SMA2K4 16K
GP 4 IM20 16IN 004.0 - 007.3 NOT SWITCHED
GP 5 OM22 32OUT 008.0 - 015.3 "
GP 6 IM22 32IN 016.0 - 023.3 "
GP 7 OM22 32OUT 024.0 - 031.3 "
GP 8 IM22 32IN 032.0 - 039.3 "
GP 9 OM23 16OUT 040.0 - 043.3 "
GP 10 OM22 32OUT 048.0 - 055.3 "
GP 11 OM22 32OUT 056.0 - 063.3 "
GP 12
GP 13
GP 14 AD20 PS01 32D I 1320 - 1351 MID 1001 TEMP MEASUREM.
GP 15 VI21/1 NETWORK 2256 - 2319 148 CAM
GP 16 VI21/1 NETWORK 2320 - 2383 152 INFO SYSTEM
GP 17 RS20 SECT 1 64D I/O 1000 - 1063 MID 1001 PREV. SECTION
GP 18 RS20 SECT.3 64D I/O 1064 - 1127 MID 1001 NEXT. SECTION
GP 19 VI21/1 ECU 148.0 - 151.3 ECU
GP 20 DM20 3480 - 3495
GP 21 DM21 128KBYTES (IN PROGRAM) BAT=ON 64KRAM/64KEPROM
GP
GP
GP PC20 CARD RACK(2) ADRESS SETTINGS REMARKS:
GP 1 IM22 32IN 064.0 - 071.3 NOT SWITCHED
GP 2 IM22 32IN 072.0 - 079.3 "
GP 3 IM22 32IN 080.0 - 087.3 SWITCHED
GP 4 IM22 32IN 088.0 - 096.3 "
GP 5 IM22 32IN 096.0 - 103.3 "
GP 6 IM22 32IN 104.0 - 111.3 "
GP 7 IM22 32IN 112.0 - 115.3 "
GP 8 "
GP 9
GP 10
GP 11 OM23 16OUT 120.0 - 123.3 NOT SWITCHED
GP 12 OM23 16OUT 124.0 - 127.3 "
GP 13 OM23 16OUT 128.0 - 131.3 "
GP 14 OM23 16OUT 132.0 - 135.3 "
GP 15 OM23 16OUT 136.0 - 139.3 SWITCHED
GP 16 OM23 16OUT 140.0 - 143.3 "
GP 17 OM23 16OUT 144.0 - 147.3 NOT SWITCHED
GP 18
GP 19
GP 20
GP 21

Ref no.

Date

Page 40/

GP
GP
GP
NP
GP ***
GP * PROGRAM INFO:
GP ***
GP ADDRESSING THE DM20
GP
GP DM20 CONTROL REGISTER
GP =====================
GP 3480 MSD LOW SMA ADDRESS
GP 3481
GP 3482
GP 3483 LSD LOW SMA ADDRESS
GP 3484 MSD HIGH SMA ADDRESS
GP 3485
GP 3486
GP 3487 LSD HIGH SMA ADDRESS
GP 3488 MSD ADDRESS POINTER IN DM
GP 3489
GP 3490
GP 3491
GP 3492
GP 3493
GP 3494 LSD ADDRESS POINTER IN DM
GP 3495 I/O CONTROL (0 =DISABLE, 1 =ENABLE, 2 =WRITE, 3 =READ)
GP

7.2Apendix B Abbreviations and name explanations

AD20 PC20 card analog inputs 8 , 0..10 V , 0..20 mA , 4..20 mA , 4 digits per input
1000bit range, each channel scantime 0,1 ms

AD21 PC20 card analog inputs 8, 0..10 V , 0..20 mA , 4..20 mA , 4 digits per input
1000bit range, each channel scantime 0,1 ms, R.C. time 0,5 ms

AI20 PC20 card analog input 1 ,0..10 V 0..20 mA 4..20 mA, digits per input
adjustable 1000bit range/ scantime 0,04 ms

AM30 MC30/31 card analog 8in /4out ,0..1V ,0..10V, -10..10V, 0..20mA
AO20 PC20 card analog outputs 1, 0..10 V, 0..20 mA, 4..20 mA, 3 digits per output ,

conversiontime 500 nS
BCD Binary Coded Decimal. The data presentation the PC20 uses for calculations.
BIDM21 DM20 backpanel cable for use in a PC20 rack configuration
BIDM23 DM20 backpanel for use in a PC20 rack configuration
CI20 PC20 card serial bidirectional programming interface, RS232422
CI21 PC20 card serial bidirectional programming/networking interface, RS232 /442
CI30 MC30 card serial bidirectional programming networking interface,RS232/422
CP20 PC20 card CPU 2k16 2 x EPROM 0.25k4 battery ext|
CP21 PC20 card CPU 1k16 RAM 0.25k4 battery int|
CP22 PC20 card CPU extern,max 8k4 2k4 battery ext. use MM20, MM21, MM22
CP22[16k] PC20 card CPU extern,max 16k4| 2k4 battery ext. MM23 ,MM25
CP24 PC20 card CPU 2k16 RAM 0.25k4 battery ext
CP25 PC20 card CPU 2k16 RAM 2k4 battery ext
DA20 PC20 card analog outputs 8, 0..10 V, 0..20 mA , 4..20 mA, 4 digits per output

1000bit range
DA21 PC20 card analog outputs 4, 0..10 V, -10V..10V ,max 20 mA , 3 digits per

Ref no.

Date

Page 41/

output
DM20 PC20 card Data memory controller 1Mb Max
DM21 PC20 card Data memory storage 64Kram , 64Keprom. Bat backup
DM22 PC20 card Data memory storage 128Kram .Bat backup
DM23 PC20 card Data memory storage 128Keprom
EC20 High speed counter card
Fusion PC20/S5 Development software (Pulse Venlo Netherlands)
HMI Human Machine Interface
IM20 PC20 card inputs 16, 24 VDC, led’s off option
IM22 PC20 card inputs 32, 24 VDC, led's upper or lower, switch selectable
IM23 PC20 card inputs 16, 48 VDC, led's
IO30/1 MC30 card Input/output 24in/16out
IO31 MC30 card Input/output 12in/8out, 1A, short circuit proof
Label Symbolic equivalent of a line number
LSB Least Significant Bit
LSB Least Significant Bit
LSD Least Significant Digit
MC20 Predecessor of MC30/MC31 with 2K16 eprom 0,5K4 SMA 32in/20out
MC30/1 PC20 based microcontroller 2K4, 2K16, 24in ,16out expandeble
MC31 PC20 based microcontroller 2K4, 8K16, 24in ,16out, RS232,RS485 PPCCOM

onboard, expandeble
MC40 PC20 like stand alone microcontroller
MC41 PC20 like stand alone microcontroller
MI20 PC20 card interface between PU20 en MC20/PLC773
MID Module Identification pads for card addressing
MM20 PC20 card memory 8k16,8 x 2k8 EPROM , EPROM's type 2716.
MM21 PC20 card memory 8k16 RAM, batt. int max 30 hours
MM22 PC20 card memory 4k16 RAM, batt. int max 30 hours
MM23 PC20 card memory 16k16 RAM, batt. int| kan maximaal 300 uur
MM25 PC20 card memory 16k16,4 x 8k8 EPROM
MM26 PC20 card memory 16k16,4 x 16k8 EEPROM
Modbus Modicon PLC network protocol
MONI.EXE DOS PC20 Monitor Program written by I.Verijdt
MSD Most Significant Digit
NIBBLE 4 Bit “word” size used by the PC20
OM20 PC20 card outputs 16, 24 V, 0.5 A , max. 6A per module
OM21 PC20 card outputs 8, 24 V, 2 A, max. 8A per module
OM22 PC20 card outputs 32,30 V,100 mA ,Floating (gnd) outputs
OM23 PC20 card outputs 16, 60 V, 0.5 A,max. 6A per module
PDS35 PC20 Development software (TeHa Netherlands)
PENI.EXE DOS PC20 Monitor Program for “fast” PC’s (Pentium) written by I.Verijdt
PLC Programmable Logic Controller
PLC773 Rack card version MC20 with 2K16 eprom 0,25K4 SMA 32in/20out
PPCCOM Is a data communication protocol used for data exchange between networked

PLC’s in a master / slave configuration . PPCCOM supports RS232 and RS485
(point to point and multi drop) asynchronous data communication.

PPCCOM Is a data communication protocol used for data exchange between networked
PLC’s in a master / slave configuration . PPCCOM supports RS232 and RS485
(point to point and multi drop) asynchronous data communication.

PU20/2 MC30/PC20 Desk top programming unit
PU21 PC20 card interface between PU20 and PC20.
PU23 PC20 card interface between PU20 and PC20/MC20/PLC773.
PU30 MC30/PC20 Handheld programming unit
RP20 PC20 card parallel bidirectional interface, for displays en thumbwheel

switches

Ref no.

Date

Page 42/

RP30 MC30 card bidirectional Parallel I/O bus
RR Result register of logic program result. Used to store result and enable

following instructions.

RS20 PC20 card serial bi-directional interface, for communication between PC20’s,
3 modes (master, slave, passive slave)

RSE Reset Central Processor (If activated while RSME enable then reset SMA)

RSME Reset Scratchpad Memory Enable

SCADA Supervisory Control And Data Acquisition “Data presentation and handling”
SCIO Separate configuring code for Inputs and Outputs for card addressing
SFC Sequence Flow Control “Step program”
SM Scratchpad Memory
SMA Scratchpad Memory Address
SMA Scratchpad Memory Address
SO20 PC20 card power+outputs 8, 24 V, 0.5 A ,max. 1A per module
TeHa A software company that build many software tools for PC20 programming.

The company does no longer exist.
VI20 PC20 card serial bi-directional interface, prog. mem. 2k16,scratchpad mem.

0.25k4 RS232
VI21 PC20 card serial bi-directional interface, prog. mem. 2k16,scratchpad mem.

0.25k4 RS232/442 PPCCOM
VI22 PC20 card serial bi-directional interface, for MODBUS interface RS485

7.3 Apendix C Short Instruction Set PC20

Short Description Instruction set PC20 PLC
INSTRUCTION

NO
:

DESCRIPTION RR ACTIONS IN CPU PC20: USED:

 NOP 00 NO OPERATION - RESET RESULT OF LOGICAL RUNG -

 TRG SMA.0
 01 EDGE PULSE / CYCLE HIGH EDGE PULSE(USED WITH

EQL/N)
 BEFORE EQL

 EQL SMA.0 02 EQUAL - RR-> SMA. (COPY RESULT TO SMA) TRG/RESULT

 EQN SMA.0
 03 NOT EQUAL - NOT RR-> SMA. (COPY INVERSE RESULT

TO SMA)
 TRG/RESULT

 TRG SMA.0 SMA.0 = RR
 EQL SMA.1 1CYCLE HIGH ALS RR IS HIGH
 SFL SMA 04 1 BIT LEFT 1 SHIFT 1 BIT LEFT IN SMA SMA.3->OVF GENERAL
 SFR SMA 05 1 BIT RIGHT 1 SHIFT 1 BIT RIGHT IN SMA SMA.0->OVF GENERAL
 SFL SMA1 1ST RESET OVF REG.(0.0)
 SFL SMA2 OVF SMA1 -> SMA2.0 (SFR.3)
 STB SMA.0 OVF SMA2 -> SMA.0

 CND SMA
 06 COUNT DOWN 1 SMA=SMA-1 SMA->RE.M/Q-1 9=CARRY-

>SMA
 BEFORE STR.

 CNU SMA
 07 COUNT UP 1 SMA=SMA+1 SMA->RE.M/Q+1

0=CARRY->SMA
 BEFORE STR.

 CNU SMA1 RR=1 SMA1+1 OVF-> STATE

 CNU SMA2 STATE=1 SMA2+1 OVF-

>STATE

 STB SMA.0 STATE->SMA.0
 ST0 SMA.0 08 SET 0 1 SMA.= 0 OUT
 ST1 SMA.0 09 SET 1 1 SMA.= 1 OUT

 STB SMA.0
 10 STORE BIT 1 REG A->SMA.0 NA FHD FHB FHC 1ST

START
 TEL/COMP

 OVF-> SMA.0 NA SFL SFR

CALCULATION

Ref no.

Date

Page 43/

INSTRUCTION

NO
:

DESCRIPTION RR ACTIONS IN CPU PC20: USED:

 STATE-> SMA.0 NA CND CNU
 COMP.0->SMA.0 NA CMP
 FTB SMA.0 11 FETCH BIT 1 (16)SMA.->REG A&B 1ST CLEARS A&B TEL/COMP
 FHC CONST 12 FETCH CONST 1 (4)CONST ->REG A&B 1ST CLEARS A&B TEL/COMP
 FTD SMA 13 FETCH DIGIT 1 (4)SMA ->REG A&B 1ST CLEARS A&B TEL/COMP
 STD SMA 14 STORE DIGIT 1 (4)REG A-> SMA. 1ST START BEREK. TEL/COMP
 COMP->SMA NA CMP
 CMP SMA 15 COMP.IN NIBLE 1 COMP REG A WITH SMA RES.IN SMA BEFORE STR.
 FHD SMA1 SMA1->REGISTER A&B

 CMP SMA2 COMP REG A/SMA2 RES-

>COMP

 STD SMA3 COMP->SMA3 .0= .1< .2>

.3#

 STB SMA3.0 COMP.0 ->SMA3.0 .0=

 AND SMA
 16 LOGIC. AND - RR AND SMA.->RR {AND A

example }
 RESULT

 ANN SMA
 17 LOGIC.NAND - RR NAND SMA.->RR {ORI B

}
 RESULT

 ORI SMA
 18 LOGIC. OR - RR OR SMA.->RR {AND C

}
 RESULT

 ORN SMA
 19 LOGIC.NOR - RR NOR SMA.->RR {ORI D

RR=A+(BC)+D }
 RESULT

 ADD SMA
 20 ADD 1 (4)SMA->B(A+B =A->SMA) 0.0=B=0 CALCULATION

.

 SUB SMA
 21 SUBTRACT 1 (4)SMA->B(A-B =A->SMA) 0.0=B=0 CALCULATION

.
 FHD SMA1 SMA1->REGISTER A&B

 ADD SMA2 SMA2->REGISTER B

(SUB)

 STD SMA3 REG.A=REG.A+REG.B ->

SMA3

 (ADD)ALS REG.A>9999 OVF-> SMA 0.0 =

1

 (SUB)ALS REG.A<0 OVF-> SMA 0.0 = 1

 MUL SMA
 22 MULTIPLY. 1 (4)SMA->M&Q(M&Q*B=A->SMA)

0.0=B=0
 CALCULATION
.

 FHD SMA1 SMA1->REGISTER A&B

 MUL SMA2 SMA2->REG.M/Q REG.A &

OVF=0

 STD SMA3 REG.A=REG.B*REG.M/Q

->SMA3

 ALS REG.A>9999 OVF-> SMA 0.0 = 1
 EERSTE STD(STB) START BEREKENING

 DIV SMA
 23 DIVIDE 1 (4)SMA->B(A/B=M&Q->SMA REST=A

0.0=0
 CALCULATION
.

 FHD SMA1 SMA1->REGISTER A&B
 DIV SMA2 SMA2->REG.B OVF=0

 STD SMA3 REG.M/Q=REG.A/REG.B

->SMA3

 ALS REG.B=0 OVF(SMA 0.0) = 1
 REST VALUE REMAINS IN REG.A
 JSF PMA 24 FALSE->SUBR 0 PMA = SUBR.(PMA) PMA+1 IN STACK FUNCTIONS
 JST PMA 25 TRUE->SUBR. 1 PMA = SUBR.(PMA) PMA+1 IN STACK FUNCTIONS
 RET 26 END SUB - PMA = STACK PMA RR = RR VAN PMA-1 FUNCTIONS
 LIO SMA 27 LAST IO - SMA = LAST I/O ADRES(END =1ST I/O) I/O SELECT
 28
 JBF N 29 JUMP BACK 0 PMA=PMA-N PMA+1 IN STACK JUMP RELATIV
 JFF N 30 JUMP FORW. 0 PMA=PMA+N PMA+1 IN STACK JUMP RELATIV

 END SMA
 31 GA REGEL 0 - SMA = FIRST I/O ADRES UPDATE PMA =

0
 I/O SELECT

Ref no.

Date

Page 44/

7.4Apendix D Wiring diagram Programming cable PC20

WIRING PC RS232 TO CI21.

FEMALE (DTE)
9-POLIG PC

Wiring MALE (DTE)
25-POLIG CI

1 RLSD in out 8 RLSD
2 RXD? in out 3 RXD
3 TXD? out in 2 TXD
4 DTR out in 20 DTR
5 GND --- --- 7 GND
6 DSR in out 6 DSR
7 RTS out in 4 RTS
8 CTS in out 5 CTS
9 RI 22 RI

	1.Introduction
	1.1Version control
	1.2About this document

	2.Introduction PC20 PLC
	2.1Operating system problems for support programs

	3.The PC20 PLC system
	3.1PLC system
	3.2 Specifications
	3.3PLC 20 Hardware overview
	CPU Card
	Memory Cards
	power supply
	rack (backpanels)
	Input / Output cards
	Communication cards
	Special cards
	Wiring support Connection cards

	3.4Configuration and Addressing of the PLC PC20
	Module Identification (MID)
	Separation Code for Inputs and Outputs (SCIO)
	Hardware lay out in PC20 Program
	The CI20/21 for Programming
	The MM20..26 memory card
	The CP20..25 Central Processor Unit
	The RS20 Communication between PC20’s
	The PM25 Servo positioning
	The VI20/21/22 Bidirectional serial interface
	The VI21 Bidirectional serial/network interface
	The VI22 Bidirectional modbus interface
	The Analog Input /Output cards
	The DM20/21/22/23 memory cards
	The EC20 high speed counter card

	4.PLC Software and Software Tools
	4.1The Instruction set
	The logic instructions AND, OR, AND NOT, OR NOT, TRIG
	 Execute instructions EQL,EQL NOT, SET1,SET0, FETCH BIT,STORE BIT
	Execute instructions FETCH CONSTANT, FETCH DIGIT, STORE DIGIT
	Execute instructions ADD, SUBTRACT, DIVIDE, MULTIPLY
	Execute instructions COMPARE, COUNTDOWN, COUNTUP
	Execute instructions SHIFT LEFT, SHIFT RIGHT
	Jump instructions JUMP TO SUBROUTINE TRUE/FALSE ,RETURN
	Jump instructions JUMP RELATIVE TRUE/FALSE
	 System Instructions END,LAST INPUT OUTPUT and NO OPERATION

	4.2Program examples
	 AND , OR EQL
	 CLOCK TIMING SIGNALS
	 COUNTER&TIMER
	 SUBROUTINES
	 CALCULATIONS

	4.3The program layout
	 Standard program structure
	 Often used program structure
	 Start up delay

	4.4PDS35
	4.5Developed Software tools by third parties

	5.Converting PC20 to S7 (or other PLC,s)
	6.Working online with the PC20
	6.1PDS 35 online monitoring
	6.2MONI online monitoring
	6.3PC20 online tools for Windows XP and W2000

	7.APPENDICES
	7.1Apendix A PLC Hardware environment in Source code
	7.2Apendix B Abbreviations and name explanations
	7.3 Apendix C Short Instruction Set PC20
	7.4Apendix D Wiring diagram Programming cable PC20

